検索条件入力検索結果一覧:(本学所蔵) > Pointwise ergodic theorems for arithmetic sets . Le théorème de comparaison entre cohomologies de de Rham d'une variété algébrique complexe et le théorème d'existence de Riemann . Volumes of s-arithmetic quotients of semi-simple groups . Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups . Harmonic mappings of Kähler manifolds to locally symmetric spaces . Absolutely continuous invariant measures for maps with flat tops . A foliation of R[3] and other punctured 3-manifolds by circles . Transformation de Fourier et majoration de sommes exponentielles
書誌詳細
  

NCIDBA10100151
タイトルPointwise ergodic theorems for arithmetic sets / by Jean Bourgain . Le théorème de comparaison entre cohomologies de de Rham d'une variété algébrique complexe et le théorème d'existence de Riemann / par Zoghman Mebkhout . Volumes of s-arithmetic quotients of semi-simple groups / by Gopal Prasad . Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups / by Armand Borel and Gopal Prasad . Harmonic mappings of Kähler manifolds to locally symmetric spaces / by James A. Carlson and Domingo Toledo . Absolutely continuous invariant measures for maps with flat tops / by Michael Benedicks and Michal Misiurewicz . A foliation of R[3] and other punctured 3-manifolds by circles / by Elmar Vogt . Transformation de Fourier et majoration de sommes exponentielles / par Nicholas M. Katz et Gérard Laumon
出版者Bures-sur-Yvette : Institut des hautes études scientifiques , 1989
形態232 p. : ill. ; 27 cm
注記Includes bibliographical references
シリーズ名Publications mathématiques ; no. 69
著者情報Bourgain, Jean, 1954-
Mebkhout, Zoghman
Prasad, Gopal
Borel, Armand, 1923-2003
Carlson, James A.
Toledo, Domingo
Benedicks, Michael
Misiurewicz, Michał, 1948-
Vogt, Elmar
Katz, Nicholas M., 1943-
Laumon, Gérard
Institut des hautes études scientifiques (France)
和洋区分
標題言語英語
本文言語英語,フランス語
出版国フランス
ISBN2130425445
WebCatPlus を見る    CiNii Books を見る
所蔵一覧
巻号予約予約人数所在請求記号資料ID状態備考
1 0理数学411.1:I903018404 研究室  

選択行を: